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SUMMARY

The results of a numerical study of the viscous oscillating ¯ow around a circular cylinder at low Keulegan±
Carpenter numbers (KC) and frequency parameters (b) are presented in this paper. The ®nite element method
was used for the solution of the Navier±Stokes equations in the formulation where the streamfunction and
vorticity are the ®eld variables. The computation was conducted at Keulegan±Carpenter numbers extending up to
KC� 15 and frequency parameters ranging between b� 6 and 100. At low values of the Keulegan±Carpenter
number the ¯ow remains symmetrical. As the Keulegan±Carpenter number is increased over a certain value
which depends also on the frequency parameter, asymmetries appear in the ¯ow which are eventually ampli®ed
and lead ®nally to complex vortex-shedding patterns, some of which are markedly different from those observed
at higher frequency parameters. The solution revealed that although for certain values of KC and b the shedding
of vortices is periodic, there also exists a complicated ¯ow regime in which the ¯ow is not periodic but switches
between different modes in consecutive cycles of ¯ow oscillation. For the various ¯ow cases examined, the
traces of the hydrodynamic forces are presented and the hydrodynamic coef®cients and RMS values of the in-
line force are compared with experimental evidence. # 1998 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 26: 403±442 (1998).
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1. INTRODUCTION

Oscillatory ¯ow past a circular cylinder is a ¯ow phenomenon which has proved to be a challenging

area for research, since it provides a simpli®ed tool for the investigation of ¯ow around a cylinder

immersed in a wave environment. The phenomenon is controlled by two dimensionless numbers, the

Keulegan±Carpenter number (KC) and the Reynolds number (Re). KC is de®ned as

KC � UmT=D; �1�
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where Um is the maximum ¯ow velocity, T is the period of oscillation and D is the cylinder diameter.

The Reynolds number is

Re � UmD=n; �2�
where n is the kinematic viscosity. The ratio of these two numbers is known as the frequency

parameter (b) and is de®ned as

b � Re=KC � D2=nT : �3�
Several experimental investigations of the phenomenon have been conducted throughout a wide

range of Reynolds and Keulegan±Carpenter numbers. Experiments at low KC have revealed that the

¯ow can be classi®ed into a number of different ¯ow regimes governed mainly by KC and dependent

also on Re.1±3 At KC � 1 the ¯ow remains attached, symmetrical and two-dimensional. As KC

increases, the ¯ow separates from the cylinder and remains symmetrical, until KC reaches a critical

threshold whose value depends on the frequency parameter. If this critical KC is exceeded, the ¯ow

becomes asymmetric and various vortex-shedding ¯ow regimes are observed in which the number of

vortices shed in each oscillation cycle increases with the Keulegan±Carpenter number. Although

several investigators have proposed ranges of KC for particular types of vortex shedding, more than

one shedding mode is possible even when KC and b are ®xed, as reported by Bearman et al.,1 and the

¯ow may switch between different modes. Bearman et al.1 described the transverse vortex-shedding

regime in the interval 8 < KC < 15 and the diagonal shedding mode in the interval 15 < KC < 25.

Williamson2 observed the transverse street �7 < KC < 13�, single-pair �13 < KC < 15�, double-pair

�15 < KC < 24� and triple-pair �24 < KC < 32� regimes with increasing KC. The diagonal shedding

of Bearman et al.1 is an alternative de®nition of the double pair described by Williamson,2 since in

both studies two vortex pairs are convected away from the cylinder in opposite directions during one

cycle. Tatsuno and Bearman4 conducted a ¯ow visualization study for a large number of KC and b
pairs, where KC extended up to 15 and b was lower than 160. Their investigation revealed eight ¯ow

regimes within this KC and b range and the great signi®cance of b in the form of the ¯ow pattern for

constant KC. It is interesting to note that some of the regimes detected by Tatsuno and Bearman4 do

not seem to occur at higher values of b. Honji5 conducted a ¯ow visualization study of oscillatory

¯ow which revealed that a three-dimensional instability develops at small KC. This three-

dimensional instability was further studied by Sarpkaya3 and Tatsuno and Bearman.4

Attached oscillatory ¯ow at very small KC was studied analytically by Stokes.6 Wang7 obtained a

solution of the Navier±Stokes equations valid for KC � 1 and b� 1 and proposed formulae for the

drag and inertia coef®cients. For values of b higher than 1000, Sarpkaya3 found differences between

his measured drag values and those predicted by Wang's7 analysis for KC > 0�7, and attributed the

discrepancy to the three-dimensional instability quoted before.

With the increasing ef®ciency of digital computers, the numerical solution of the phenomenon in

two dimensions became feasible. Baba and Miyata8 presented a ®nite difference solution for KC� 5

and 7 and Re � 1000. The ¯ow pattern in this simulation was symmetrical, therefore physically

unrealistic. Murashige et al.9 used a similar technique to analyse the ¯ow at KC� 5, 7 and 10 for Re

extending up to 10,000. The ¯ow was perturbed arti®cially for the generation of asymmetry, therefore

agreement with the physical phenomenon was obtained. Wang and Dalton10 obtained a ®nite

difference solution of the Navier±Stokes equations for KC� 1±12 and Re� 100±3000. Justesen11

conducted a detailed computational study of planar oscillatory ¯ow, also employing the ®nite

difference technique, for b ranging between 196 and 1035 and KC extending up to 26. He observed

various vortex-shedding regimes when KC exceeded approximately 7, while his computed drag

values were very similar to those predicted by Wang7 for KC extending up to 1�5 for b� 1035 and up

to 2 for lower values of b. This constitutes very strong support for Sarpkaya's hypothesis that the
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discrepancy between measured and calculated drag values for KC > 0�7 when b exceeds 1000 is the

result of a three-dimensional instability, which cannot be investigated by a two-dimensional

computation. Moreover, Skomedal et al.,12 Graham and Djahansouzi13 and Smith and Stansby14 used

discrete vortex methods for the calculation of two-dimensional ¯ow. Skomedal et al.12 employed the

random walk method for the solution and compared their results with measurements in a U-tube

under similar conditions. Although the ¯ow pattern derived computationally was in good agreement

with the experimental ¯ow visualization, and the computed RMS values of the total in-line force

compared reasonably with the measured ones in most cases, disagreement was observed between the

computed and measured coef®cients of the in-line force for KC > 10. In addition, discrepancies were

detected between computed and measured RMS values of the transverse force. Graham and

Djahansouzi13 presented results of the ¯ow pattern and force coef®cients for b� 196 and KC� 1±6.

Smith and Stansby14 used the random vortex method for the solution of oscillating ¯ow around

cylinders. Their solution is con®ned to KC 4 3, but apart from circular cylinders, they also examined

cylinders of non-circular cross-section. Anagnostopoulos et al.15 employed a ®nite element scheme

for the solution of oscillating ¯ow at Re� 100 and KC� 2 and 4 in the regime where the ¯ow

remains symmetrical.

In the present study the ®nite element method was used for the solution of viscous oscillatory ¯ow

around a circular cylinder. The computation was conducted at Keulegan±Carpenter numbers

extending up to KC� 15 and frequency parameters between b� 6 and 100. The symmetrical ¯ow

regime was considered ®rst, and afterwards the various vortex-shedding cases were studied.

Emphasis was given to the analysis of asymmetric ¯ows in the region where the frequency parameter

was kept low, yielding Reynolds numbers lower than 500. The numerical solution provides a

complete description of the ¯ow ®eld and the hydrodynamic forces exerted on the cylinder. Since the

¯ow phenomenon is highly unsteady, the ¯ow visualization patterns are presented at various time

instants over one or one-half of an oscillation cycle when the ¯ow is periodic, and at consecutive

periods in the aperiodic ¯ow regime. To con®rm the validity of the computer code, the numerical

results are compared with experimental ¯ow visualizations and force measurements under similar

conditions.

2. NUMERICAL SOLUTION

2.1. Governing equations

In the present study the streamfunction (C) and vorticity (z) formulation of the Navier±Stokes

equations was used, according to which

H2C � ÿz; �4�

@z
@t
� @C
@y

@z
@x
ÿ @C
@x

@z
@y
� nH2z: �5�

Considering the values of C and z at two successive time levels n and n� 1, the governing equations

become

H2Cn�1 � ÿzn; �6�

@zn

@t
� @Cn�1

@y

@zn

@x
ÿ @Cn�1

@x

@zn

@y
� nH2zn�1: �7�
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2.2. Boundary conditions

The time-dependent freestream velocity U �t� of the oscillatory ¯ow is de®ned in terms of the

maximum ¯ow velocity Um as

U �t� � Um sinf; f � 2pt=T ; �8�

where t is the time interval considered from the inception of the ¯ow oscillation. The boundary

condition for the streamfunction on the horizontal boundaries U and D shown in Figure 1 is

CU � U �t� yU; CD � U �t� yD; �9�

while on the vertical boundaries L and R the streamfunction varies linearly according to the

relationship

C � U �t� y: �10�

As origin of the co-ordinate system, the intersection of the boundary L and the horizontal axis of

symmetry of the solution domain was taken.

The vorticity was assumed equal to zero throughout the outer boundaries, while along a no-slip

boundary it can be calculated from the formula

z1 �
3
�

S
�u dx� v dy�

D
ÿ �z2 � z3�; �11�

which is easily derived from the relationship between the vorticity and circulation over an element,

and whose various parameters are explained in Figure 2. Here z1; z2 and z3 are the vorticity values at

the three nodes of the element (e) considered, and the two components of the ¯uid velocity along the

element boundary are denoted as u and v. D is the area of the element, while the S appearing in the

integral denotes integration around the whole perimeter of the element. The integration in (11) was

conducted by expressing u and v in terms of the corresponding nodal velocities using linear

interpolation.

Figure 1. Solution domain
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2.3. Solution technique

A ®nite element technique was used for the solution, similar to that used by Smith and Brebbia16,17

and Anagnostopoulos18 for the solution of ¯ow around cylinders in a uniform stream. The main

features of the solution procedure are described as follows.

Assuming that C�e�n�1 is the approximation of the streamfunction over the element (e) application of

Galerkin's method to (6) yields

� �
D�e�

N
�e�
i

@2C�e�n�1

@x2
� @

2C�e�n�1

@y2
� z�e�n

 !
dx dy � 0; i � 1; 2; 3; �12�

where N
�e�
i are the interpolation functions for the element (e). Integrating equations (12), expressing

C�e�n�1 and z�e�n in terms of their nodal values for the element considered, as

C�e�n�1 � �N ��e�fCg�e�n�1; z�e�n � �N ��e�fzg�e�n ; �13�

and assembling for the whole solution domain, we obtain the matrix relationship

�K1� fCgn�1 � �K2�fzgn � fR1g; �14�

where �K1� and �K2� are square matrices and fR1g is a column matrix. Since @C=@n � 0 throughout the

boundaries, the matrix fR1g becomes equal to zero. Storage requirements are reduced considerably by

taking advantage of the symmetric and banded character of the matrices �K1� and �K2�.
In a similar manner, application of Galerkin's method to (7) yields

� �
D�e�

N
�e�
i n

@2z�e�n�1

@x2
� @

2z�e�n�1

@y2

 !
dx dy

�
� �

D�e�
N
�e�
i

@zn

@t
� @Cn�1

@y

@zn

@x
ÿ @zn�1

@x

@zn

@y

� �
dx dy; i � 1; 2; 3: �15�

Integration of (15) and assembly throughout the domain yields the matrix relationship

�K3�fzgn�1 � �K4�f_zgn�1 � fR2g � fR3g; �16�

Figure 2. De®nition sketch
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where _z is the derivative of z with respect to time. The matrices �K3� and �K4� are stored in banded

form for the reduction of storage requirements, whereas fR2g and fR3g are column matrices.

Expressing _z as

_zn�1 �
zn�1 ÿ zn

Dt
;

equation (16) becomes

�K3� �
1

Dt
�K4�

� �
fzgn�1 �

1

Dt
�K4�fzgn ÿ fR2g; �17�

since the natural boundary condition for z is @z=@n � 0, rendering the matrix fR3g equal to zero.

The solution is started assuming zero vorticity throughout the solution domain. The solution

algorithm consists of the following steps.

1. The streamfunction is evaluated at time t � Dt from the solution of (14) using the known nodal

values of vorticity at time t.

2. The vorticity values at the no-slip boundary are corrected from (11).

3. The vorticity at t � Dt is calculated from the solution of (17).

2.4. Computational mesh

For the solution of the problem, various computational meshes were used, the exact mesh

con®guration depending on the ¯ow case under investigation. All meshes consist of three-node

triangular elements, as shown in the sample of Figure 3. In the part of the solution domain near the

cylinder where a re®ned grid was used, the nodal points were placed on circles concentric with the

cylinder cross-section. The element size in the vicinity of the cylinder was very small, increasing

gradually with the distance from the cylinder, as shown in the enlarged view near the cylinder

appearing in the window. An important issue is the element size close to the cylinder compared with

the boundary layer thickness d of the oscillating ¯ow. As a guideline, we used the boundary layer

thickness around an oscillating ¯at plate (Stokes' second problem6), which can be approximated by

d � 4�n=o�1=2, where d is de®ned as the distance from the plate at which u=Um is 6% and o denotes

the circular frequency of oscillation. Assuming that the previous value of d applies also for a circular

cylinder and recalling the de®nition of the frequency parameter from (3), the previous relationship

after some manipulation yields d=D � 4=�2pb�1=2. Therefore this formula, showing clearly that the

boundary layer thickness decreases with increasing square root of b, can be used as a guideline for the

determination of d. For b� 100 the ratio d=D was found to be equal to 0�16, whereas for b� 10 the

ratio d=D equals 0�5.

From the previous discussion it is evident that for higher b-values a more re®ned grid near the

cylinder should be used for better accuracy of the ®eld variables within the boundary layer. The

enlarged view of Figure 3 suggests that the grid re®nement near the cylinder was adequate for the

resolution of ¯ow within the boundary layer in the range of b-values examined. The validity of

applying the boundary layer thickness of oscillatory ¯ow around a ¯at plate to oscillating ¯ow around

a circular cylinder will to be examined later, considering velocity pro®les derived from the solution.

For the KC and b parameter values at which the phenomenon was symmetrical with respect to the

wake centreline, a mesh with vertical boundaries (denoted as L and R in Figure 1) located 10 cylinder

diameters upstream and downstream from the cylinder centre was used. For the KC and b parameter

regime in which the ¯ow was asymmetric with respect to the wake centreline, the boundaries L and R

were located 20 diameters upstream and downstream from the cylinder centre. It is evident that since
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Figure 3. Finite element mesh
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the extent of the symmetrical ¯ow regime was not known a priori, when the solution of a ¯ow case

attempted with a shorter mesh became eventually asymmetric, it was continued with a grid network

which encompassed a larger part of the ¯ow ®eld in the streamwise direction. The mesh of Figure 3,

used for the study of asymmetric ¯ow, contains 3352 nodes and 6580 elements. In most cases, 64

nodal points were placed on the cylinder boundary. In the exceptional case where the separation angle

was under the investigation, the number of nodal points on the cylinder was increased to 128 for an

improvement in the solution accuracy.

The upper and lower mesh boundaries (U and D of Figure 1) were placed 10 cylinder diameters

above and below the wake centreline. Although a smaller distance between U and D would reduce the

number of nodes contained in the computational grid, the distance of 20 diameters between

boundaries U and D was favoured in order to simulate as accurately as possible the unrestricted ¯ow

conditions.

2.5. Calculations of shear, pressure and forces

The pressure distribution on the cylinder surface can be calculated from the relationship

@p

@s

� �
w

� rn
@z
@n

� �
w

; �18�

where s and n are the tangential and normal directions on the cylinder surface at the point considered.

The pressure distribution throughout the ¯ow ®eld can be calculated from the solution of Poisson's

equation:

@2p

@x2
� @

2p

@y2
� ÿ2r

@u

@y

@v
@x
ÿ @u
@x

@v
@y

� �
: �19�

Application of Galerkin's method to (19) for an element (e) and assembly throughout the domain as

described by Anagnostpoulos18,19 yields

�K5�fpg � fR4g � fR5g; �20�
in which the element r5i of the column matrix fR5g is given by

r5i �
�

S

@p

@n
ds: �21�

The integration is performed at the part of the boundary where a natural boundary condition for

pressure is speci®ed. The equation of motion along the radial direction on the cylinder surface yields

the following boundary condition for pressure on the cylinder:

@p

@n
� m

@z
@s
: �22�

On the other hand, the equation of motion in the horizontal direction on the boundaries L and R of

Figure 1, where the vorticity is zero, yields the boundary condition for pressure as

@p

@n
� ÿr dU

dt
; �23�

where U is the time-dependent stream velocity given by (8).

It is evident that equation (18) gives the pressure distribution only around the cylinder, whereas

Poisson's equation yields the pressure distribution throughout the solution domain. For the evaluation

of pressure throughout the solution domain, the system of equations (20) should be solved, which is

computationally more expensive than the direct application of (18).

410 G. ILIADIS AND P. ANAGNOSTOPOULOS

INT. J. NUMER. METHODS FLUIDS, VOL. 26: 403±442 (1998) # 1998 John Wiley & Sons, Ltd.



The shear stress on the cylinder was calculated from the vorticity zw at the boundary by the

formula

tw � ÿmzw: �24�
The in-line and transverse forces per unit cylinder length are calculated from the integration of shear

and pressure around the cylinder as

Fx* �
�2p

0

p cos y dyÿ m
�2p

0

zw sin y dy; �25�

Fy* � ÿ
�2p

0

p sin y dyÿ m
�2p

0

zw cos y dy; �26�

where y is the angle de®ning the location of the point considered from the leading edge of the

cylinder in the clockwise direction. Fx* and Fy* can be non-dimensionalized according to the formulae

Fx � Fx*=0�5rU2
mD; Fy � Fy*=0�5rU 2

mD: �27�

3. RESULTS

Computations of oscillating ¯ow around a circular cylinder have been conducted for a large number

of pairs of KC and b, for KC extending up to 15 and b ranging between 6 and 100. Results of

symmetrical ¯ow will be presented ®rst in terms of the ¯ow pattern and time-dependent

hydrodynamic forces. Similar sets of results will be used in the asymmetric ¯ow regime for the

interpretation of the various vortex-shedding patterns. The force coef®cients derived from the total

in-line force will be presented for b� 34 and 53 in the interval 0 < KC < 10. An important issue of

the whole study is the boundary between symmetrical and asymmetric ¯ow, which can be determined

on the KC±b plane from the results of the various ¯ow cases.

Formula (3) dictates that in the present study the Reynolds number may exceed 500, therefore a

matter of interest is the range over which the present laminar code can fully resolve the ¯ow; it should

be remembered that in the case of steady ¯ow around a circular cylinder the transition to turbulence is

initiated for Re between 150 and 200. Sarpkaya3 reports that the KC at which the oscillating ¯ow

around a cylinder becomes turbulent decreases with increasing values of the frequency parameter. At

b� 125, which is the lowest value he considered, the KCt at which the boundary layers become

turbulent is 3�25, while the projection of the data line at lower b-values would give KCt � 4 for

b� 50. It seems therefore that in the set of computations for b� 53 the present laminar code can fully

resolve the ¯ow for KC < 4. For KC > 4 it will be assumed that the ¯ow remains laminar in the

largest part of the oscillation cycle where U �t� is lower than Um, therefore the error from the use of

the present code can be considered as small. A similar assumption is made for the higher KC-values

considered herein when b� 34.

3.1. Symmetrical ¯ow

Boundary between symmetrical and asymmetric ¯ow. It is well known from previous studies that at

low KC the ¯ow remains symmetrical with respect to the wake centreline. Bearman et al.1 and

Williamson2 report that symmetrical pairing of vortices occurs for KC < 4. The visual study by

Tatsuno and Bearman4 and Justesen's11 computations revealed that the KC at which the inception of

asymmetric ¯ow is observed depends also on b.
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The evaluation of the KC above which asymmetric ¯ow occurs for a certain b was conducted with

the technique described as follows. For each pair of KC and b under examination, disturbances to the

¯ow were introduced arti®cially, accomplished by increasing the vorticity at some nodal points close

to the wake centreline upstream and downstream from the cylinder. In the case where these

disturbances were ampli®ed, leading to complicated vortex-shedding patterns, the ¯ow was

characterized as asymmetric, while their dampening suggested the persistence of symmetrical ¯ow. It

should be stressed that the asymmetries in the vortex-shedding cases could be developed without the

introduction of disturbances, but in such a case the process was much slower, requiring a large

number of oscillation cycles, especially for values of KC±b lying close to the boundary with the

symmetrical ¯ow.

After a series of tests with a large number of KC and b pairs as shown in Figure 4, the boundary

between symmetrical and asymmetric ¯ow on the KC±b plane was determined in the form of a ®tting

curve. It should be added that even in the case of symmetrical ¯ow, small-scale asymmetries were

detectable in the ¯ow ®eld above and below the wake centreline, giving rise to a very small transverse

force. These asymmetries were also observed by Smith and Stansby,14 who used an enforced

symmetry technique for their elimination. It is evendent that the KC at which the asymmetry of ¯ow

begins decreases drastically with increasing values of the frequency parameter. The inception of

asymmetry occurs at KC � 10�5 for b� 10, whereas the ¯ow becomes asymmetric at KC� 3�5 for

b� 100. The decrease in the critical KC marking the boundary between symmetrical and asymmetric

¯ow is very abrupt at low b-values. Figure 4 shows that good agreement exists with the results of the

visual study by Tatsuno and Bearman,4 although for the same value of b the critical KC in the

experiment is somewhat lower than that derived from the computation. The difference is more

pronounced in the low b-value regime.

Figure 4. Boundary between symmetrical and asymmetric ¯ow
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Flow pattern. The streamlines with respect to a stationary frame of reference during one-half of an

oscillation cycle for KC� 4 and b� 50 (Re� 200) are depicted in Figure 5. Four ¯ow patterns are

presented for the half-cycle during which the freestream velocity is positive �0�4f4 180��. The

sequence of frames reveals that a symmetrical pair of counter-rotating vortices is formed behind the

cylinder during each half-cycle, whose size increases with the phase angle. It is interesting to observe

the curvature of streamlines upstream from the cylinder in Figure 5(a), owing to the vorticity

generated during the previous half-cycle. This feature is in contradiction to the ¯ow pattern around a

cylinder in unidirectional ¯ow.

For the investigation of the effect of the change in direction of the approaching velocity, six

streamline patterns have been plotted in Figure 6 for the case KC� 4 and b� 50, for f around 180�.
Figure 6 shows that as f increases towards 180�, the two separation bubbles above and below the

wake centreline increase in size and encroach upon a large part of the ¯ow ®eld upstream from the

cylinder, until they are split into two parts each. When f becomes almost equal to 180�, a second pair

of counter-rotating vortices is detectable behind the cylinder. As the ¯uid velocity changes direction,

the two vortex pairs formed behind the cylinder decrease in size continually, until they ®nally

disappear.

The equivorticity lines for Re� 200 and KC� 2 and 4 (b� 100 and 50 respectively) are displayed

in Figure 7. Throughout the present work the vorticity has been non-dimensionalized according to the

formula z* � zD=2Um. Moreover, the positive values of vorticity and pressure contours will be

sketched with full lines and the negative values with broken lines. In the case where KC� 2, at

f � 0� the vorticity is negative in the upper half of the cylinder and positive in the lower half. A pair

of vorticity contours can be seen upstream from the cylinder, of positive and negative vorticity above

Figure 5. Streamline patterns over one-half of an oscillation cycle for KC� 4 and b� 50
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Figure 6. Streamline patterns for phase angle around 180�; KC� 4 and b� 50
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Figure 7. Vorticity contours over one half-cycle: (I) KC� 2 and b� 100; (II) KC� 4 and b� 50. The full lines represent
positive and the broken lines negative values of vorticity

(I) (II)
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and below the wake centreline respectively. These vorticity contours have been reduced in size for

f � 45� and disappeared for f � 90�. For f � 90�, positive vorticity is detectable in the

downstream part of the cylinder above the wake centreline and negative vorticity below the wake

axis. As f becomes greater than 90�, the positive vorticity area above the wake centreline is

extended, until it reaches the leading edge of the cylinder at f� 180�; the behaviour of the negative

vorticity below the wake axis is similar. When KC is increased to 4, at f � 0� we can see two pairs of

opposite sign vorticity contours upstream from the cylinder, generated during the previous half-cycle,

the pair A close to the cylinder and the pair B further upstream. The streamline curvature upstream

from the cylinder quoted before can be explained with reference to this vorticity distribution. As the

¯ow direction reverses, these two pairs of vorticity loops are washed downstream. The pair B, which

moves slowly towards the cylinder, is still detectable at f � 90� and amalgamates with the vorticity

generated on the cylinder when f becomes equal to 135�. The pair A, although it decreases in size

from the interaction with the vorticity generated on the cylinder as it is convected downstream,

persists and is still detectable at f� 180�.
In Figure 8 the length of the separation bubble as a function of the phase angle is depicted for

Re� 200 and KC� 2 and 4. The length of the separation bubble increases almost linearly with the

phase angle for f < 160� when KC� 2, and throughout the half-cycle for KC� 4. Figure 8 dictates

that for equal phase angles the separation bubble becomes larger with increasing KC, a result quoted

also by Justesen11 in the same range of KC for b� 250. Comparison with Justesen's results reveals

that for constant KC the separation bubble decreases with increasing b.

The distribution of the dimensionless vorticity around the upper half of the cylinder for b� 50 and

KC� 4 (Re� 200) over one half-cycle is shown in Figure 9. For f � 0� the maximum absolute

vorticity occurs close to the leading edge of the cylinder. The maximum absolute vorticity increases

as the phase angle is increased to 45�, while for f � 135� the absolute vorticity values around the

cylinder become low. When f has reached 90�, a positive vorticity region can be seen in the

downstream part of the cylinder where the ¯ow has been separated, in agreement with the vorticity

distribution of Figure 7.

The pro®les of the streamwise velocity along the vertical axis through the cylinder centre are

displayed in Figure 10 for four different KC±b pairs in the symmetrical ¯ow regime. In all four cases

the thickness of the boundary layer will be compared with that of an oscillating ¯at plate when the

phase angle is equal to zero, implying zero instantaneous stream velocity. For the three b-values

examined, the boundary layer thickness on an oscillating ¯at plate is: (a) b� 100, d=R� 0�32; (b)

b� 50, d=R� 0�46; (c) b� 7�4, d=R� 1�18. Recalling that the boundary layer thickness d
corresponds to streamwise velocity 6% of Um, the values of d=R obtained from Figure 10 are: (a)

KC� 2 and b� 100, d=R� 0�29; (b) KC� 1 and b� 50, d=R� 0�36; (c) KC� 4 and b� 50,

d=R� 0�50; (d) KC� 11 and b� 7�4, d=R� 1�34. From the two different values of d in cases (b) and

(c) we conclude that although the boundary layer thickness in the case of the oscillating ¯at plate

depends only on b, in the two-dimensional ¯ow case around a cylinder it is also a function of KC.

Moreover, the d-values derived from Figure 10 differ from those predicted from the ¯at plate theory

by 10%, except for KC� 1 and b� 50 where the discrepancy is higher. In spite of this discrepancy,

the previous analysis has con®rmed that the boundary layer thickness corresponding to oscillatory

¯ow around a ¯at plate can be used for a ®rst estimate of d in the case of oscillating ¯ow around a

cylinder. For higher values of the phase angle the velocity pro®les are different from those

corresponding to f � 0�. An interesting matter is the comparison of the velocity pro®les when

f� 90� in cases (a) and (c), which both yield a Reynolds number equal to 200. The superposition of

the two pro®les indicates almost perfect coincidence. This result can be explained by bearing in mind

that when f� 90�, the acceleration of the oscillating stream is zero, therefore the ¯ow is dominated

by the Reynolds number.
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Hydrodynamic force. For the evaluation of the pressure distribution around the cylinder the two

techniques mentioned previously were tested, namely the application of equation (18) and the

solution of the system of equations (20). The comparison of the results obtained from the two

techniques was very good. Although the application of (18) is more economic, the solution of

Poisson's equation was favoured in the present computation, since the complete pressure distribution

throughout the solution domain was desirable. In the present context the pressure has been

nondimensionalized according to the formula p* � p=0�5rU2
m.

Figure 8. Length of separation bubble as a function of phase angle for Re� 200

Figure 9. Vorticity distribution around cylinder over one half-period for KC� 4 and b� 50
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The total in-line force exerted on the cylinder was calculated from (25). The time history of the

dimensionless in-line force for KC� 2 and b� 100 (Re� 200) is shown in Figure 11. Figure 11

reveals that the total force and its pressure and friction parts are almost sinusoidal and that the

contribution of pressure to the total force is much greater than that of shear. Moreover, the freestream

velocity lags behind the pressure force by approximately 90� and the shear force by 45�.

3.2. Vortex-shedding cases

If the Keulegan±Carpenter number exceeds a critical value which depends on the frequency

parameter, asymmetries appear in the ¯ow pattern which are eventually ampli®ed and lead to

complicated vortex-shedding patterns. As described in the Introduction, the existence of distinct

vortex-shedding regimes is well established. Various attempts to study numerically these complicated

Figure 10. Pro®les of streamwise velocity along vertical axis through cylinder centre for various values of KC and b
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¯ow patterns have been conducted for b5 196,9±13 while only Wang and Dalton10 quote

computational results at low b-values. Since the visual study by Tatsuno and Bearman4 revealed

the existence of shedding patterns different from those observed at higher b-values, it was decided to

con®ne the present solution to the range of b-values studied by those investigators. On a large part of

the KC±b plane the ¯ow is periodic, the periodicity being con®rmed from the ¯ow pattern and force

traces. In addition, the numerical solution revealed the existence of an extensive regime on the KC±b
plane in which the ¯ow is aperiodic. This means that the ¯ow pattern switches between different

modes in consecutive cycles. For a better interpretation of this regime, which proved a very tempting

issue, analysis of the ¯ow pattern and force traces over a large number of consecutive cycles is

required.

Oblique vortex rows. An example of oscillatory ¯ow where asymmetries have been developed is

given in Figure 12 for KC� 6�28 and b� 22�1, in which the equivorticity lines over one oscillation

cycle are portrayed. Figure 12(a) depicts the vortices existing from previous cycles. The negative sign

vortex in the lower part of the cylinder appears in elongated form compared with that formed at the

upper side and is tilted upwards. In addition, two parallel rows of opposite sign vortices exist at both

sides of the cylinder, inclined to the horizontal. The strength of these vortices decreases with

increasing distance from the cylinder. For freestream velocity from left to right, negative vorticity

develops in the upper half of the cylinder and positive vorticity in the lower half, whereas the vortices

formed during previous cycles are convected towards the streamwise direction. It is seen from Figure

12(b) that the positive vorticity formed during the previous half-cycle above the cylinder starts to

split into two parts, a process leading to the formation of two equal sign vortices in subsequent

frames. The negative vortex formed during the previous half-cycle below the cylinder is swept

downstream and pairs up with the opposite sign vortex forming below the cylinder. When the stream

velocity becomes zero at f� 180�, the negative sign vortex has moved further downstream, while the

positive vortex forming below the cylinder appears in elongated form with respect to that forming

above the cylinder, as shown in Figure 12(f). When the direction of the stream velocity reverses, the

vortices shed during the previous half-cycle are swept back towards the cylinder, as shown in the

sequence of frames in Figures 12(g)±12(j). Examination of the sequence of vorticity contours over the

entire period indicates that one vortex is shed during each half-cycle. The solution over a large

Figure 11. Time history of total in-line force and its components for KC� 2 and b� 100
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number of oscillation cycles revealed the absolute periodicity of the phenomenon. The vorticity

pattern of Figure 12 is in good agreement with the visual study by Tatsuno and Bearman4 under

similar conditions, characterized by those authors as regime `D'.

Another solution was obtained for KC� 6�28 and b� 25�6, a case studied also by Tatsuno and

Bearman.4 The equivorticity lines for this case are depicted in Figure 13. The ¯ow pattern is similar

Figure 12. Vorticity contours over one oscillation cycle for KC� 6�28 and b� 22�1
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to that of Figure 12, the main difference being the direction in which the vortices are aligned. Tatsuno

and Bearman state that the ¯ow which convects to one side of the axis of oscillation intermittently

changes its direction to the other side. Moreover, their visual study revealed that this ¯ow regime has

a strong three-dimensional structure. The change in the ¯ow direction led Tatsuno and Bearman to

the classi®cation of a new ¯ow regime, denoted as `E'. The solution over a large number of cycles did

not show the switching of the ¯ow direction observed experimentally. It seems therefore that the

switching of the ¯ow direction is associated with the three-dimensional character of the ¯ow, whose

solution is out of reach with the present two-dimensional code.

The time-dependent in-line force for KC� 6�28 and b� 25�6 is shown in Figure 14. The in-line

force is periodic but not sinusoidal, a result compatible with the periodicity and asymmetry of the

¯ow pattern. The asymmetry of the ¯ow pattern with respect to the wake centreline gives rise to the

generation of a transverse force, whose time history is also depicted in Figure 14. At the beginning of

the cycle �t=T � 25� the transverse force has a low negative value. In the early stages of the cycle

Figure 13. Vorticity contours over one oscillation cycle for KC� 6�28 and b� 25�6
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there is a surplus of negative vorticity on the cylinder surface, which is the reason for the positive

peak of the transverse force at f � 45�. This is analogous to the ideal ¯ow case, where the

superposition of a negative (clockwise) vortex on the uniform ¯ow past a cylinder creates a positive

lift force. At f � 90� the symmetry of the vortices attached above and below the cylinder depicted in

Figure 13(c) results in zero transverse force, whereas the positive vorticity surplus below the cylinder

in Figure 13(d) gives rise to a negative transverse force in the second quarter of the cycle. There exist

two peaks per half cycle, therefore the frequency of the transverse force is twice the frequency of the

oscillatory ¯ow.

Double pair. Numerical experiments revealed that there exists a regime on the KC±b plane in

which a vortex-shedding pattern occurs, according to which two pairs of counter-rotating vortices are

shed per oscillation cycle. An example is the sequence of Figure 15, in which the vectors representing

the relative ¯uid velocities with respect to the instantaneous stream velocity over one cycle are

depicted for KC� 10 and b� 20. Three pairs of counter-rotating vortices existing from the previous

Figure 14. Traces of hydrodynamic forces during two oscillation periods for KC� 6�28 and b� 25�6
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Figure 15. Velocity vectors and vortex patterns over one period for KC� 10 and b� 20. The frame of reference is that of a
cylinder oscillating in still water
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cycle are superimposed on the velocity ®eld in Figure 15(a). The pair A0±B0 was shed during the ®rst

half of the previous cycle, whereas the pair A±B was shed during the second half. The vortices C and

D close to the cylinder were formed during the previous half-cycle. As the ¯ow direction reverses, the

vortex D passes over the cylinder and pairs up with the vortex C, while the vortex E is forming below

the cylinder, as shown in Figure 15(b). Each of the counter-rotating vortices C and D induces in the

other a convective velocity towards the streamwise direction, which, superimposed on that of the

oscillating stream, results in an increased velocity of the pair; this is the reason for the large

displacement of the pair C±D between Figures 15(b) and 15(c). In Figure 15(c) the vortex F has been

formed above the cylinder, while the pair C±D has been shed; the pair A0±B0 has moved further

downstream, outside of the part of the solution domain displayed. As the ¯ow velocity reverses, the

vortex F passes below the cylinder and pairs up with the counter-rotating vortex E, as shown in

Figure 15(d). The pair E±F has been shed in Figure 15(e), while the pair A±B has been swept in the

direction of the stream velocity and is not visible any more. Therefore two pairs of counter-rotating

vortices (C±D and E±F) are shed during an oscillation cycle.

The equivorticity lines, relative streamlines and isobars over one half-cycle are displayed in Figure

16. The contours of Figure 16 can be used for the exact determination of the instantaneous position of

the centre of each vortex and provide an alternative for the interpretation of the shedding process

explained previously with reference to Figure 15. The isobars of Figure 16(c) superimposed on the

equivorticity lines at the same instant are displayed in Figure 17. It can be clearly seen that minimum

pressure occurs at the centre of each vortex, whereas there exists a pressure hill at the point where the

vorticity contours emerging from the cylinder and encompassing the vortex D come close to each

other, forming a `neck'. This pressure hill may be used for the de®nition of the vortex boundary, in a

similar manner to the vortex shedding behind a cylinder in unidirectional ¯ow, as has been shown in

the numerical ¯ow visualization study conducted by Anagnostopoulos.19

For the determination of the position of the vortices shed at previous cycles, the relative

streamlines and vorticity contours over a larger part of the solution domain are presented in Figure

18. It is interesting to note that the vortices shed at subsequent cycles remain in close contact with

each other, whereas the vortex strength is reduced as the distance from the cylinder increases. The

present computational results compare very well with Tatsuno and Bearman's4 ¯ow visualization

study in regime `F'.

The pressure distribution around the cylinder at four time instants over one half-cycle is presented

in Figure 19. When the arrows point inwards, the pressure is positive; when they point outwards, the

pressure is negative. The values of the non-dimensional pressure around the cylinder are displayed on

the diagrams, while the arrow in the cylinder indicates the magnitude and direction of the resulting

pressure force.

The in-line and transverse forces are presented in Figure 20 over two oscillation cycles. Both

forces are completely periodic. The maximum in-line force is lower than in the case of Figure 14 and

occurs at f� 56�. The clockwise vortex D of Figure 15 passing over the cylinder is the reason for the

positive transverse force in the early stages of the cycle, whereas the counter-clockwise vortex E

below the cylinder in Figure 15(b) results in negative transverse force for f � 90�. The clockwise

vortex F passing below the cylinder in Figures 15(c) and 15(d) induces negative transverse force in

the early stages of the second half-period, whereas the counter-clockwise vortex G passing over the

cylinder at f � 170� is the reason for the positive peak of the transverse force appearing in Figure 20

at t=T � 20�75. The time history of the transverse force derived from the present computation is

similar to that presented by Williamson2 for a double pair when KC lies between 15 and 24 for

increased values of b compared with those of the present study. In both cases the frequency of the

transverse force is three times the oscillation frequency. Williamson states that the fundamental lift

frequency is n� 1 times the oscillation frequency, where n is the number of vortices shed per half-
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Figure 16. Flow ®eld for KC� 10 and b� 20 over one-half of a period: (I) equivorticity lines; (II) streamlines, in a frame of reference with respect to oscillating stream velocity;
(III) pressure contours. The full lines represent positive and the broken lines negative values in the vorticity and pressure diagrams
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cycle. The results of the present study are in agreement with this rule, since for the oblique rows

(n� 1) the lift frequency is twice the oscillation frequency, whereas for a double pair (n� 2) the

frequency of the transverse force is three times the frequency of an oscillation cycle.

The double-pair con®guration of the present solution seems to be similar to that observed for

15 < KC < 25 at higher b. The ¯ow pattern at corresponding phase angles agrees considerably with

that derived from the experimental studies of Bearman et al.,1 Williamson2 and Obasaju et al.,20

although the angle at which the vortex pair moves away from the cylinder is smaller in some cases.

Another difference is that the ¯ow pattern computed herein is periodic and the direction in which the

pair convects away from the cylinder remains constant throughout all cycles. On the other hand, as

reported by Bearman et al.1 and Obasju et al.,20 switching of the direction in which the vortices are

convected can occur at different cycles, which has a critical effect on the transverse force exerted on

the cylinder. A similar situation was obtained from the present solution at higher values of b, as will

be explained in the following subsection.

Aperiodic shedding. Apart from the two previous well-de®ned vortex-shedding cases, there exists

an extensive regime on the KC±b plane in which the shedding of vortices is irregular. Each pair of KC

and b yields a different ¯ow pattern which is not periodic in consecutive ¯ow cycles. The non-

periodicity of the ¯ow pattern results in the generation of intermittent traces of the hydrodynamic

forces exerted on the cylinder.

The change in the vortex-shedding pattern at different period was realized by Bearman et al.1 and

Obasaju et al.20 For the determination of the ¯ow mode at each cycle those researchers recorded the

streamwise ¯uid velocity at a point on the wake centreline just behind the cylinder; the velocity signal

was Fourier analysed and the various cycles were sorted according to the phase and predominant

frequency. In the present numerical study the direct determination of the shedding pattern at each

Figure 17. Pressure contours (thin lines) superimposed on equivorticity lines (thick lines) for case of Figure 16(d). The numbers
represent the local values of dimensionless pressure

426 G. ILIADIS AND P. ANAGNOSTOPOULOS

INT. J. NUMER. METHODS FLUIDS, VOL. 26: 403±442 (1998) # 1998 John Wiley & Sons, Ltd.



period was possible from the graphical representation of the ¯ow pattern obtained from the numerical

solution. It is evident that although the numerical solution gives a complete description of the ¯ow

parameters throughout the domain, which cannot be obtained experimentally, the computation over a

large number of periods requires a long computer time. The CPU time required imposes limits on the

number of oscillation cycles considered, which may lead to reduced reliability of the sample.

One of the ¯ow cases studied in the aperiodic regime is that for KC� 10 and b� 34. The traces of

the hydrodynamic forces, which are depicted in Figure 21 over a large number of cycles, display

Figure 18. Enlarged view of Figure 16(a): (I) relative streamlines; (II) equivorticity lines
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¯uctuations of the amplitude of the in-line and transverse forces. The time history of the

hydrodynamic forces for t=T lower than 21 and higher than 24 is similar to that of Figure 20

corresponding to a double pair, whereas the decreased values of the transverse force at t=T between

21 and 24 suggest a temporal alteration of the ¯ow pattern. An interesting feature is the opposite sign

of the transverse force at the same phase angle over a period in the double-pair case before and after

the transition. It is evident that at t=T < 21 the transverse force is positive at the beginning of each

period, whereas at t=T > 24 it has become negative. This suggests a change in the direction in which

each vortex pair is convected away from the cylinder.

The equivorticity lines at t=T between 21�5 and 24, when the stream velocity becomes equal to

zero (phase angle equals 0� or 180�), are presented in Figure 22. The ¯ow pattern varies substantially

at different periods, although the phase angle is the same. In Figure 22(a) the ¯ow pattern is similar to

that of a transverse vortex street occurring at higher values of b for KC ranging between 7 and 13,

observed also by Tatsuno and Bearman4 at KC and b in the same range as in the present investigation.

It is interesting to note the similarity of Figure 22(a) to Justesen's11 solution for KC� 8 and b� 196.

The almost symmetric ¯ow pattern with respect to the wake centreline in Figures 22(d)±22(f) is

compatible with the low values of the transverse force at t=T between 23 and 24.

The equivorticity lines over the period commencing at t=T � 25 are presented in Figure 23. The

¯ow pattern is similar to the double pair depicted in Figures 15 and 16, as anticipated from the traces

of the transverse force. The difference is that the pair of vortices is convected below the cylinder in

the ®rst half of the period, in agreement with the trace of the transverse force, and the ¯ow is not

absolutely periodic.

Figure 19. Pressure distribution around cylinder over one half-period for KC� 10 and b� 20. The numbers signify the local
pressure values, while the arrow in the cylinder indicates the magnitude and direction of the resulting pressure force
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Another solution in the aperiodic regime was obtained for KC� 6�25 and b� 53. Tatsuno and

Bearman's4 Figure 3 shows that this point lies near the boundary between the oblique vortex rows,

the double pair and the aperiodic ¯ow on the KC±b plane, therefore it is an interesting case for

investigation of the transition. The time history of the hydrodynamic forces is depicted in Figure 24.

The in-line force is very close to sinusoidal, with a small ¯uctuation of the amplitude, whereas the

transverse force displays an irregular character depending on the ¯ow mode of the cycle considered.

For example, for the cycle beginning at t=T � 51, the trace of the lift force reveals a double pair,

whereas at t=T between 52�4 and 53�4 the oblique shedding seems to be dominant. The vorticity

contours con®rmed that for t=T ranging between 51 and 52, the ¯ow pattern is that of a double pair.

In order to investigate the transition mechanism, the equivorticity lines for KC� 6�25 and b� 53 for

t=T ranging between 51�95 and 53�35 are presented in Figure 25. Comparing Figures 25(a)±25(c)

with Figures 25(f)±25(h) at equal phase angles of the following period, we can easily con®rm the

non-periodic character of the phenomenon. The ¯ow pattern near the cylinder in Figures 25(a) and

25(b) is almost symmetrical with respect to the wake centreline. Figure 25(c) shows a vorticity

pattern whose con®guration near the cylinder is similar to that of Figure 13(d), which represents the

Figure 20. Traces of hydrodynamic forces during two oscillation periods for KC� 10 and b� 20
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oblique rows case. When the phase angle has exceeded 180� in Figure 25(d), the ¯ow pattern near the

cylinder becomes similar to that of Figure 13(f). The similarity to the oblique shedding case near the

cylinder is preserved throughout the sequence of frames in Figures 25(d)±25(h). The vortices

convected away from the cylinder do not form rows tilted with respect to the horizontal axis, but

instead seem to accumulate around the wake centreline upstream and downstream from the cylinder.

Another case of particular interest is that for KC� 10 and b� 53. The solution over a large number

of oscillation cycles revealed that the dominant ¯ow pattern is that of a double pair, but the direction

in which the vortex pair is convected away from the cylinder does not remain constant. This change

in direction can be interpreted with reference to the sequence of equivorticity lines presented in

Figure 26. As the stream velocity changes direction, the vortex A of Figure 26(a) is swept

downstream and pairs up with vortex B, as shown in Figure 26(b). In Figure 26(d) the counter-

rotating pair A±B has moved further downstream, whereas the vortex D of Figure 26(c) has been split

into two parts, denoted as D1 and D2. In Figure 26(e) the vortices D1 and D2 have been convected in

the ¯ow direction, the vortex D2 having formed a pair with the counter-rotating vortex C. The vortex

E of Figure 26(f) appears displaced far upstream from the cylinder and at a higher level compared

with the corresponding vortex A of the previous cycle. As a result, the vortex E remains upstream and

above the wake centreline as the ¯ow direction reverses, as shown in Figure 26(g). In Figure 26(h) the

Figure 21. Traces of hydrodynamic forces during many oscillation periods for KC� 10 and b� 34
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vortex E has been convected over the cylinder, whereas in Figure 26(i) it has come into close contact

with the counter-rotating vortex C. In subsequent frames the vortices C and E pair up and are

displaced far from the cylinder in the ¯ow direction. After the shedding of the vortex F, the vortex G

of Figure 26(k) has been formed at the opposite side of the cylinder from the vortex A of Figure

26(a), therefore the vortex pair G±H of Figure 26(l) moves away from the cylinder in the opposite

direction from the pair A±B of Figure 26(b) at the same phase angle but two oscillation cycles earlier.

It should be remembered that this switching has been found experimentally by Bearman et al.1 and

Obasaju et al.20 at KC between 15 to 25 for higher values of the frequency parameter.

For a better interpretation of the various shedding modes the equivorticity lines over 12 successive

cycles are displayed in Figure 27 for f� 68�. In Figures 27(a), 27(d), 27(f) and 27(h) the ¯ow pattern

is that of a double pair. In most cases the vortex pair is convected below the cylinder during the ®rst

half of the oscillation cycle, whereas only in Figure 27(f) does the vortex pair move away from the

cylinder above the centreline of the wake. In Figures 27(e) and 27( j) we can see the negative sign

vortices in contact with the leading edge of the cylinder. As explained previously, these vortices

failed to cross over the cylinder as the ¯ow direction changed, remaining upstream from the cylinder.

The effect of this `failure' is the intermission of the double-pair sequence.

Figure 22. Vorticity contours for t=T between 21�5 and 24 when stream velocity becomes equal to zero; KC� 10 and b� 34
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Figure 23. Vorticity contours for cycle beginning at t=T � 25; KC� 10 and b� 34
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The time history of the hydrodynamic forces over 14 oscillation cycles, including those of Figure

27, is depicted in Figure 28. In some intervals the force traces corresponding to a double pair are

recognizable, while in others they display an irregular character. The transverse force is more

susceptible to the alteration of the ¯ow pattern than the in-line force. The traces of the hydrodynamic

forces for t=T between 24 and 29 are shown in Figure 29 on a different time scale. At the ®rst and last

periods shown, the transverse force is that of a double pair, convecting below the cylinder in the ®rst

half of the period. On the other hand, for the cycle beginning at t=T � 26, the trace of the transverse

force is that of a double pair moving away from the cylinder in the opposite direction, whereas when

t=T lies between 27 and 28, the transverse force displays a random character. The force traces of each

cycle are compatible with the ¯ow pattern of Figure 27.

The three previous examples provide a good idea of the complexity of the ¯ow pattern in the

aperiodic regime, a prominent characteristic of which is the switching of modes at different cycles.

For points on the KC±b plane close to the boundary with the periodic ¯ow, the prevalent ¯ow modes

are those of the periodic patterns closest to the point considered. An interesting feature of this regime

is the appearance of the transverse street, a ¯ow pattern not observed in the periodic regime for this

KC and b range.

Figure 24. Traces of hydrodynamic forces during many oscillation periods for KC� 6�25 and b� 53
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3.3. Hydrodynamic coef®cients of in-line force

Morison et al.22 proposed that the total in-line force exerted per unit length of a cylinder in an

oscillating ¯ow can be expressed as the sum of two components,

Fx* � 1
2
rDCDU jU j � 1

4
prD2CM

_U ; �28�

Figure 25. Vorticity contours for t=T between 51�95 and 53�35; KC� 6�25 and b� 53
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Figure 26. Vorticity contours over two consecutive oscillation cycles starting at t=T � 24; KC� 10 and b� 53

V
IS

C
O

U
S

O
S

C
IL

L
A

T
O

R
Y

F
L

O
W

A
R

O
U

N
D

A
C

Y
L

IN
D

E
R

4
3
5

#
1
9
9
8

Jo
h
n

W
iley

&
S

o
n

s,
L

td
.

IN
T

.
J.

N
U

M
E

R
.

M
E

T
H

O
D

S
F

L
U

ID
S

,
V

O
L

.
2
6
:

4
0
3
±
4
4
2

(1
9
9
8
)



Figure 27. Vorticity contours at 12 consecutive cycles when phase angle is 68�; KC� 10 and b� 53
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where r is the ¯uid density and CD and CM are the drag and inertia coef®cients. The Fourier-averaged

coef®cients CD and CM for a cylinder immersed in an oscillating ¯ow, as de®ned by (8), are given

by23

CD �
3

8

�2p

0

Fx* sinf
0�5rU 2

mD
df; �29�

CM �
UmT

p3D

�2p

0

Fx* cosf
0�5rU 2

mD
df; �30�

where f is the phase angle in (8).

The RMS value of the total in-line force in dimensionless form is de®ned as

Fx�rms� � 1

T

�T

0

Fx*

0�5rU 2
mD

� �2

dt

" #1=2

: �31�

The drag and inertial coef®cients as functions of KC for b� 34 and 53 are depicted in Figures 30

and 31. Experimental results were provided at these b-values by Kuhtz,24 who conducted force

Figure 28. Traces of hydrodynamic forces during many oscillation periods for KC� 10 and b� 53
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measurements on a cylinder mounted horizontally in a U-tube; therefore the computation was

conducted at the same values of b for the sake of comparison. Figures 30 and 31 reveal good

agreement of the computed CD with Wang's7 analytical results for KC 4 1. As KC is increased, the

numerical CD-values become slightly higher than those predicted by Wang's analysis, most likely

owing to ¯ow separation effects. It is interesting to note the agreement of the computed CD-values

with those measured by Kuhtz24 at KC< 8 and the discrepancy for KC > 8 when b� 53.

The computed CM-values in the lower-KC regime (KC < 1) are slightly higher than those

predicted by Wang's analysis in both diagrams, while for KC ranging between 1 and 2, the computed

CM-values became closer to the analytical ones. For KC > 2 the computed CM-values depart from

those predicted by Wang. In the KC range between 2 and 8, small discrepancies are observed between

the CM-values computed by the present code and the experimental ones, which increase drastically as

KC becomes greater than 8 at b� 53.

Figure 4 dictates that the discrepancy between computed and measured force coef®cients is

initiated when the ¯ow becomes asymmetric, and is ampli®ed in the aperiodic regime. For b� 53,

Figure 29. Traces of hydrodynamic forces for t=T between 24 and 29; KC� 10 and b� 53
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Figure 30. Hydrodynamic coef®cients of in-line force as functions of KC for b� 34

Figure 31. Hydrodynamic coef®cients of in-line force as functions of KC for b� 53
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when KC > 8, the computed CD-values are lower than the measured ones, whereas the opposite

occurs for the computed and measured values of CM. The ¯ow for b� 53 and KC > 8 is strongly

aperiodic, which causes an intermittent trace of the in-line force, an example being that portrayed in

Figure 28. Apparently, the non-periodicity of the force trace re¯ects on the Fourier-averaged values

of the drag and inertia coef®cients. It should be noted that the three-dimensional character of the ¯ow

occurring in the experiment, as quoted by Tatsuno and Bearman,4 seems to have rather small

in¯uence on the magnitude of the in-line force coef®cients.

The RMS value of the dimensionless in-line force calculated from (31) is presented in Figure 32

for b� 34 and in Figure 33 for b� 53. The values of Fx (rms) computed herein are higher than the

predictions of inviscid theory, according to which Fx�rms� � p2 p2=KC for small KC-values. The

discrepancy can be explained by bearing in mind that in inviscid theory the contribution of shear

stress is neglected, which leads to a reduced value of the in-line force.

Figures 32 and 33 show very good agreement between computed and measured values of Fx(rms),

even in the cases where discrepancies in the force coef®cients were detected. An interesting result is

that the RMS values of the dimensionless in-line force decrease with increasing KC and are almost

independent of the b. This is further substantiated by Bearman et al.,21 who presented the RMS

values of the non-dimensional in-line force for KC up to 10 for higher b-values.

Figure 32. Root mean square value of dimensionless in-line force as a function of KC for b� 34

Figure 33. Root mean square value of dimensionless in-line force as a function of KC for b� 53
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5. CONCLUSIONS

The ®nite element method was applied for the solution of two-dimensional ¯ow around a circular

cylinder in oscillating ¯ow at low Keulegan±Carpenter numbers and frequency parameters. The

computational results are in good agreement with experimental evidence under similar conditions,4,24

which con®rms the accuracy of the solution.

For low values of the Keulegan±Carpenter number the ¯ow remains symmetrical; above a certain

value of the Keulegan±Carpenter number which depends on the frequency parameter, asymmetry

appears in the ¯ow which is eventually ampli®ed and leads to complicated vortex-shedding patterns,

some of which are different from those observed at higher frequency parameters. There also exists a

¯ow regime in which the ¯ow is aperiodic; the solution over a large number of oscillation cycles for

an extended range of KC±b pairs revealed switching of the ¯ow between different modes.

For very low values of the Keulegan±Carpenter number the computed in-line force agrees closely

with Wang's7 asymptotic solution. When the ¯ow remains symmetrical, the trace of the total in-line

force is very close to a sine wave, while when the ¯ow becomes asymmetric, the shedding of vortices

causes the generation of higher harmonics. In the vortex-shedding regime the asymmetry of ¯ow

leads to the development of a transverse force, whose time history depends on the vortex-shedding

mode. The non-periodic character of ¯ow in the aperiodic regime re¯ects on the traces of the

hydrodynamic forces.

The ¯ow visualization study by Tatsuno and Bearman4 revealed that in the largest part of the KC±b
plane the ¯ow is three-dimensional. The resolution of ¯ow in three dimensions is beyond the

capability of the present two-dimensional computer code. The agreement between the results of the

present solution and experiments suggests that the three-dimensional character of the ¯ow has a

minor effect on the principal feature of the ¯ow pattern and on the magnitude of the in-line force

exerted on the cylinder.
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